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1 Introduction

Statistical inference, or “learning” as it is called in computer science, is the process of using data
{Z;}!_, to infer the distribution that generated the data.

1.1 Examples

Example 1 (Inferring the Population Mean from the Sample Mean) Suppose there is a pop-
ulation X with an expected value p. A random sample of size n, X1, Xo, ..., X,, is drawn from this

population, and the sample mean is represented as:

_ 1<
X:EZXi.

i=1

According to WLLN, we can use the sample mean X to infer the population mean p.

Example 2 (Estimating Parameters of a Normal Distribution) Let X, X5, ..., X, be indepen-
dent observations from a mormal distribution N(u,c?). The problem is to estimate the parameters

and o2. The mazimum likelihood estimates are given by

p=-Y X=X, 6°= lzn:(xi—)‘()?
] =1

—_

n <

Example 3 (Estimating Linear Coefficient Vector) Consider independent data pairs

(X1, Y1), (X2, Y3),...,(X,,Y,,), where X; is a p-dimensional vector and Y; is a scalar observation.
Suppose the relationship between Y; and X; is given by an unknown function Y; = r(X;) + ¢ with ¢;
being independent errors. Assume further that r(X) is linear, i.e., r(X) = XT3, where 3 is an unknown
p-dimensional parameter vector. The problem then becomes estimating the parameter vector 3. This
assumption transforms the inference problem from estimating the function r(X) itself to estimating its

parameter (3.

Example 4 (k-Nearest Neighbors Function Estimation) Continuing with the setup of indepen-
dent data pairs (X1,Y1),(X2,Ys),...,(X,,Y,), where X; is a p-dimensional vector and Y; is a scalar



observation, we now consider a non-parametric approach to estimating the unknown function r(X).
Using the k-nearest neighbors (kNN) method, for a new input point X*, we identify the k closest points
X1y, X (2, -+, X(x) in the training data, along with their corresponding Y(1),Y(2), ..., Yx). The function

value r(X*) is then estimated as the average of these k Y(;) values:

This approach does not assume a specific parametric form for r(X) but instead relies on local averaging

?T‘\H

of neighboring data points for estimation.

2 Fundamental Concepts in Inference

2.1 Estimating

Let X4,...,X,, be n IID data points from some distribution F. A point estimator @L of a parameter
0 is some function of Xq,...,X,,:
9n = g(Xla e ,Xn)

2.1.1 Criteria Performance Metrics

1. MSE(Mean Square Error)
MSE = E[(6,, — 6)?].
2. Bias
Bias = E(6,, — 0) = E(6,) — 0.
0, is unbiased if E(6,,) = 0.
Connection:MSE = Bias?(6,,) + Var(6,,)

Prove:

MSE = E[(6, — )?]
E[(6n — E(0,) +E(6,) — 6)*)
E[(0n = E(6:))% + (E(61) = 0)* +2(6, — E(6)) (E(6,) — 0)]
= Var(6,) + Bias*(6,,) + 2E[(6,, — E(6,))(E(6,) — 6)]
= Var(6,) + Bias*(6,,) + 2(E(6,) — 0)E[d,, — E(6,)]
= Bias?(6,,) + Var(f,).

3. Consistency

A point estimator én of a parameter 0 is consistent if én o



Theorem 1 If bias — 0 and Var(@An) — 0 as n—oo then 9;1 is consistent, that is, én L.

Proof 1 . .
E[(0, — 0)?] _ Bias’(6,) + Var(,)

2 2 ’

P(

9;—9’>e)§

€ €

~ ~

if n — oo,bias — 0 and Var(,) — 0,then 0, 5.

4. Standard Error

se(f,) = \/ Var(6,).

2.2 Confidence Sets

A 1 — a confidence interval for a parameter 6 is an interval C,, = (a,b) where a = a(Xy,...,X,)
and b= b(Xy,...,X,) are functions of the data such that

Py €Cp)>1—«, forallfe0.
In words, (a,b) traps 8 with probability 1 — a. We call 1 — « the coverage of the confidence interval.

Warning! C,, is random and @ is fixed.

2.2.1 Eg. Expectation and Variance of an Estimator

Let [i, be an estimator of u. Then, its expectation and variance are given by:

0,2

E(fn) = p,  Var(fi,) = e
Note: The estimator fi,, is unbiased since its expectation equals the true parameter y. The variance

decreases as the sample size n increases, indicating greater precision.

For any € > 0, Chebyshev’s inequality states:

Var(fi,) o2
Py —pl >e) < ——= = .
(o —pl > €) = — =,
Consequently,

2

o

Pl —pl<e)>1-— —.

(lfon —pl <€) 21— -

Let a = 5”2—2 Solving for €, we obtain:

o
o2
g = —_—.
no

Thus, an approximate 1 — « confidence interval for p is:

R o o2
pE | fin =\ —fimn+1/—|
no no

This interval has a confidence level of 1 — a.



2.3 Theorem: Asymptotic Normality and Confidence Interval

If we know that : .
0, —0
n 7 4 N(0,1).
Se(6,,)

where 6, is an estimator of 6, and Se(én) is the standard error of 6,,. Then, the probability that 6 lies

in the confidence interval C), converges to 1 — a:
POeC,) »1—a.
where the confidence interval C,, is given by:
Cov = [0 = Zaj2 - 8e(6,),0n + 7aj2 - Se(6,)]
Here, 2,7 is the critical value of the standard normal distribution such that P(Z > z,/2) = a/2.

Under the same assumptions, the scaled estimator satisfies:

0, —06
M 4 N(0,1).
o
Note: The term o2 is replaced by the standard error Se(f,) in practice. This substitution is illustrated

below:

Se@n:i
Vi, — 0) =

o2

N(0,1).

Proof 2 The probability that 0 lies in the confidence interval C,, is:

>

-0
POeC,) =P —240 < ———<Zus|.
( ) ( /2 Se(d,) /2>

By the asymptotic normality assumption, this probability converges to:

POcC,) = 1-20(—242)=1-0u

2.4 Hypothesis testing

2.4.1 Key Components

o Null Hypothesis (Hp): A statement that there is no effect or no difference. It represents the

default or status quo assumption.

o Alternative Hypothesis (H; or H,): A statement that contradicts the null hypothesis. It

represents the research question or the effect we are testing for.



e Test Statistic: A numerical value calculated from the sample data, used to assess the strength

of evidence against the null hypothesis.

o Significance Level («): The probability of rejecting the null hypothesis when it is true (Type

I error). Common choices are o = 0.05 or o = 0.01.

o p-value: The probability of observing the test statistic or something more extreme under the

null hypothesis. If the p-value is less than «, we reject the null hypothesis.

2.4.2 Eg: Testing a Bernoulli Parameter

Consider a dataset {z;} for ¢ = 1,...,n, where each z; is independently drawn from a Bernoulli
distribution with parameter p:

x; ~ Ber(p).

We want to test whether the parameter p is equal to 1/2.

2.4.3 Hypotheses

o Null Hypothesis (Hy): p = %

o Alternative Hypothesis (H): p # .

2.4.4 Test Statistic

Under the null hypothesis, the sample mean z = %22;1 x; is an estimator of p. The test statistic for

this problem is:

gz TP
/ Po(1—po)
where py = % is the value of p under the null hypothesis. For large n, Z approximately follows a
standard normal distribution:
Z ~ N(0,1).

2.4.5 Decision Rule
o If |Z| > 242, reject the null hypothesis.

o If |Z| < 242, fail to reject the null hypothesis.

Here, z,/2 is the critical value from the standard normal distribution corresponding to the significance

level a.



2.4.6 Interpretation

o Rejecting Hy suggests that there is sufficient evidence to conclude that p # %

o Failing to reject Hy suggests that there is not enough evidence to conclude that p # %
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