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1 Introduction

Statistical inference, or “learning”as it is called in computer science, is the process of using data
{Zi}ni=1 to infer the distribution that generated the data.

1.1 Examples

Example 1 (Inferring the Population Mean from the Sample Mean) Suppose there is a pop-
ulation X with an expected value µ. A random sample of size n, X1, X2, . . . , Xn, is drawn from this
population, and the sample mean is represented as:

X̄ =
1

n

n∑
i=1

Xi.

According to WLLN, we can use the sample mean X to infer the population mean µ.

Example 2 (Estimating Parameters of a Normal Distribution) Let X1, X2, . . . , Xn be indepen-
dent observations from a normal distribution N(µ, σ2). The problem is to estimate the parameters µ

and σ2. The maximum likelihood estimates are given by

µ̂ =
1

n

n∑
i=1

Xi = X̄, σ̂2 =
1

n

n∑
i=1

(Xi − X̄)2.

Example 3 (Estimating Linear Coefficient Vector) Consider independent data pairs
(X1, Y1), (X2, Y2), . . . , (Xn, Yn), where Xi is a p-dimensional vector and Yi is a scalar observation.
Suppose the relationship between Yi and Xi is given by an unknown function Yi = r(Xi) + ϵi with ϵi

being independent errors. Assume further that r(X) is linear, i.e., r(X) = XTβ, where β is an unknown
p-dimensional parameter vector. The problem then becomes estimating the parameter vector β. This
assumption transforms the inference problem from estimating the function r(X) itself to estimating its
parameter β.

Example 4 (k-Nearest Neighbors Function Estimation) Continuing with the setup of indepen-
dent data pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn), where Xi is a p-dimensional vector and Yi is a scalar
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observation, we now consider a non-parametric approach to estimating the unknown function r(X).
Using the k-nearest neighbors (kNN) method, for a new input point X∗, we identify the k closest points
X(1),X(2), . . . ,X(k) in the training data, along with their corresponding Y(1), Y(2), . . . , Y(k). The function
value r(X∗) is then estimated as the average of these k Y(i) values:

r̂(X∗) =
1

k

k∑
i=1

Y(i).

This approach does not assume a specific parametric form for r(X) but instead relies on local averaging
of neighboring data points for estimation.

2 Fundamental Concepts in Inference

2.1 Estimating

Let X1, . . . , Xn be n IID data points from some distribution F . A point estimator θ̂n of a parameter
θ is some function of X1, . . . , Xn:

θ̂n = g(X1, . . . , Xn).

2.1.1 Criteria Performance Metrics

1. MSE(Mean Square Error)
MSE = E[(θ̂n − θ)2].

2. Bias
Bias = E(θ̂n − θ) = E(θ̂n)− θ.

θ̂n is unbiased if E(θ̂n) = 0.
Connection:MSE = Bias2(θ̂n) + Var(θ̂n)
Prove:

MSE = E[(θ̂n − θ)2]

= E[(θ̂n − E(θ̂n) + E(θ̂n)− θ)2]

= E[(θ̂n − E(θ̂n))2 + (E(θ̂n)− θ)2 + 2(θ̂n − E(θ̂n))(E(θ̂n)− θ)]

= Var(θ̂n) + Bias2(θ̂n) + 2E[(θ̂n − E(θ̂n))(E(θ̂n)− θ)]

= Var(θ̂n) + Bias2(θ̂n) + 2(E(θ̂n)− θ)E[θ̂n − E(θ̂n)]

= Bias2(θ̂n) + Var(θ̂n).

3. Consistency
A point estimator θ̂n of a parameter θ is consistent if θ̂n

P−→ θ.
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Theorem 1 If bias → 0 and Var(θ̂n) → 0 as n→∞ then θ̂n is consistent, that is, θ̂n
P−→ θ.

Proof 1
P(
∣∣∣θ̂n − θ

∣∣∣ > ϵ) ≤ E[(θ̂n − θ)2]

ϵ2
=

Bias2(θ̂n) + Var(θn)
ϵ2

,

if n → ∞,bias → 0 and Var(θ̂n) → 0,then θ̂n
P−→ θ.

4. Standard Error
se(θ̂n) =

√
Var(θ̂n).

2.2 Confidence Sets

A 1 − α confidence interval for a parameter θ is an interval Cn = (a, b) where a = a(X1, . . . , Xn)

and b = b(X1, . . . , Xn) are functions of the data such that

Pθ(θ ∈ Cn) ≥ 1− α, for all θ ∈ Θ.

In words, (a, b) traps θ with probability 1− α. We call 1− α the coverage of the confidence interval.

Warning! Cn is random and θ is fixed.

2.2.1 Eg. Expectation and Variance of an Estimator

Let µ̂n be an estimator of µ. Then, its expectation and variance are given by:

E(µ̂n) = µ, Var(µ̂n) =
σ2

n
.

Note: The estimator µ̂n is unbiased since its expectation equals the true parameter µ. The variance
decreases as the sample size n increases, indicating greater precision.

For any ε > 0, Chebyshev’s inequality states:

P (|µ̂n − µ| > ε) ≤ Var(µ̂n)

ε2
=

σ2

ε2n
.

Consequently,
P (|µ̂n − µ| ≤ ε) ≥ 1− σ2

ε2n
.

Let α = σ2

ε2n
. Solving for ε, we obtain:

ε =

√
σ2

nα
.

Thus, an approximate 1− α confidence interval for µ is:

µ ∈

[
µ̂n −

√
σ2

nα
, µ̂n +

√
σ2

nα

]
.

This interval has a confidence level of 1− α.
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2.3 Theorem: Asymptotic Normality and Confidence Interval

If we know that :
θ̂n − θ

Se(θ̂n)
d→ N(0, 1).

where θ̂n is an estimator of θ, and Se(θ̂n) is the standard error of θ̂n. Then, the probability that θ lies
in the confidence interval Cn converges to 1− α:

P (θ ∈ Cn) → 1− α.

where the confidence interval Cn is given by:

Cn =
[
θ̂n − zα/2 · Se(θ̂n), θ̂n + zα/2 · Se(θ̂n)

]
.

Here, zα/2 is the critical value of the standard normal distribution such that P (Z > zα/2) = α/2.

Under the same assumptions, the scaled estimator satisfies:
√
n(θ̂n − θ)

σ2

d→ N(0, 1).

Note: The term σ2 is replaced by the standard error Se(θ̂n) in practice. This substitution is illustrated
below:

√
n(θ̂n − θ)

σ2
N(0, 1).

Se(θ̂n) =
σ√
n

Proof 2 The probability that θ lies in the confidence interval Cn is:

P (θ ∈ Cn) = P

(
−zα/2 ≤

θ̂n − θ

Se(θ̂n)
≤ zα/2

)
.

By the asymptotic normality assumption, this probability converges to:

P (θ ∈ Cn) → 1− 2Φ(−zα/2) = 1− α.

2.4 Hypothesis testing

2.4.1 Key Components

• Null Hypothesis (H0): A statement that there is no effect or no difference. It represents the
default or status quo assumption.

• Alternative Hypothesis (H1 or Ha): A statement that contradicts the null hypothesis. It
represents the research question or the effect we are testing for.
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• Test Statistic: A numerical value calculated from the sample data, used to assess the strength
of evidence against the null hypothesis.

• Significance Level (α): The probability of rejecting the null hypothesis when it is true (Type
I error). Common choices are α = 0.05 or α = 0.01.

• p-value: The probability of observing the test statistic or something more extreme under the
null hypothesis. If the p-value is less than α, we reject the null hypothesis.

2.4.2 Eg: Testing a Bernoulli Parameter

Consider a dataset {xi} for i = 1, . . . , n, where each xi is independently drawn from a Bernoulli
distribution with parameter p:

xi ∼ Ber(p).

We want to test whether the parameter p is equal to 1/2.

2.4.3 Hypotheses

• Null Hypothesis (H0): p = 1
2
.

• Alternative Hypothesis (H1): p ̸= 1
2
.

2.4.4 Test Statistic

Under the null hypothesis, the sample mean x̄ = 1
n

∑n
i=1 xi is an estimator of p. The test statistic for

this problem is:
Z =

x̄− p0√
p0(1−p0)

n

.

where p0 = 1
2

is the value of p under the null hypothesis. For large n, Z approximately follows a
standard normal distribution:

Z ∼ N(0, 1).

2.4.5 Decision Rule

• If |Z| > zα/2, reject the null hypothesis.

• If |Z| ≤ zα/2, fail to reject the null hypothesis.

Here, zα/2 is the critical value from the standard normal distribution corresponding to the significance
level α.
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2.4.6 Interpretation

• Rejecting H0 suggests that there is sufficient evidence to conclude that p ̸= 1
2
.

• Failing to reject H0 suggests that there is not enough evidence to conclude that p ̸= 1
2
.
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